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NONCANONICAL HAMILTONIAN FORMULATION OF IDEAL 
MAGNETOHYDRODYNAMICS 

Darryl D. HOLM and Boris A. K U P E R S H M I D T  
Center Jor Nonlinear Studies, Los Alamos National Laboratory, Los Alarnos, New Mexico 87545, USA 

A noncanonical Poisson structure for ideal magnetohydrodynamics is presented and identified with a differential Lie 
algebra. 

I. Introduction 

Nonlinear hydrodynamics is still an active field 
of research in mathematical physics even though it 
has 250 years of history since the Bernoulli broth- 
ers and Euler. The most active areas in nonlinear 
hydrodynamics today are dynamical systems and 
Hamiltonian structures. In dynamical systems, 
much of the activity centers upon chaotic behavior 
of truncated modal expansions in convective flow. 
Such chaos is the main subject of this conference. 
In Hamiltonian structure studies, the main activity 
is to identify o r d e r - i n  the form of Lie algebras 
and related objects which underly the Lie-Poisson 
brackets responsible for fluid flows. 

Noncanonical Poisson brackets for fluid systems 
first appear in Gardner 's 1971 paper [1] on the 
Korteweg-de Vries equation. Since then, these 
noncanonical structures have proliferated; now 
they are known for a great many fluid dynamical 
theories. 

In this paper we present a Poisson structure for 
ideal magnetohydrodynamics (MHD) in which the 
physical variables appear explicitly. Thus, the Gal- 
ilean symmetries of MHD,  for example, are real- 
ized as canonical transformations whose gener- 
ators are physical quantities. In addition, the 
physical variables appear l inearly  in the Poisson 
bracket; which means that this bracket is in- 
timately connected with a certain differential Lie 
algebra [see the next paper for details]. 

The Lie algebra given here and all of the other 

Lie algebras connected with Poisson brackets for 
hydrodynamically-related systems turn out to be 
semi-direct products of varying complexity (see, 
e,g. [2, 3]). From the calculational point of  view, 
the presence of semi-direct products is an "experi- 
mental" observation, which is open to mathe- 
matical interpretations (see, e.g. [4]). The brackets 
themselves, though, can often be obtained by 
intuitive, physical reasoning [5] or even, some- 
times, by trial and error [6]. 

In the ideal MH D  model, electrically neutral 
plasma convects like an adiabatic fluid which 
carries an embedded magnetic field. The MH D  
fluid has mass density, p, and specific entropy, s. 
It moves through Euclidean space ~" with posi- 
tions x i and velocities vj and carries an embedded 
magnetic field Bq(x ,  t) .  The magnetic field com- 
ponents B~j are skew-symmetric and are derived 
from a vector potential, A j, according to 
B~j = Ai. 1 - Aj., with subscript notation also for par- 
tial derivatives. During convection, induced elec- 
trical currents flow: J~ = - B o j  according to Am- 
pere's Law. These induced currents oppose any 
change of magnetic flux through each co-moving 
surface. The resultant magnetic stresses alter the 
convective motion of the plasma by opposing 
bending of magnetic field lines. 

In terms of momentum density Mj = pvj ,  the 
MH D  equations are: 

3 M i / d t  = - [ M ~ M / p  + 6o(p - 1/4 Tr B 2 ) -  BikB,jl.j, 

(l) 
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ap /at = - Mj,j, 

Os/at = -- p -  IMjs a, 

aB,/at = - (B,~M~/p ),j + (Bj, M d p  ),,. 

(2) 

(3) 

(4) 

Throughout, we sum on repeated indices. Eq. (1) 
is the hydrodynamic motion equation expressed in 
conservative form as the divergence of the stress 
tensor for MHD. In the stress tensor the fluid 
pressure p is determined as a function of p and s 
from a prescribed relation for the specific internal 
energy, U(p,s), combined with the first law of 
thermodynamics, 

d U = Up dp + Us ds = p - 21) dp + T ds, (5) 

where T is temperature. Eq. (2) expresses local 
mass conservation. Eq. (3) expresses the adiabatic 
flow condition, that no heat is exchanged between 
fluid elements as they convect. Eq. (4) is the 
Maxwell induction equation with electric field 
eliminated by Ohm's law, which is written for 
perfect electrical conductivity as E~ = B~Mj/p. 

2. Poisson bracket relations 

(~_~j 6G 6G f i F )  
+Mk 6F Oj6M k 6MjC?j~_~k 

-- 6-Mi &Ak 6Mi (Ak.i -- Ai.k) 

+ " (7) 

The MHD eqs. (1)-(4) are then equivalent to the 
following bracket relations: 

1 ~ = {H, F}, Fe{p, a, M~, A j} (8) 

for Hamiltonian H given by eq. (6). The proof of 
(8) follows by comparison of the righthand side of 
eqs. (1)--(4) with terms in the identity below, 

~F 
{ H , F } =  - d"x ~fiT-F(ojMj)+ c~j(aMj/p) 

(op  

+ ~ O,[MjMk/p 

+ a A P  - 1/4 Tr B 2) - Bj~B~] 

} (9) 

The Hamiltonian for the MHD system (1)-(4) is 

H = fd°x[M2/ (2p)  + pU(s, p) - 1/4 Tr B21, (6) 

where Tr B 2 = BijBji. The Hamiltonian functional 
H is the sum of the kinetic energy, thermal energy, 
and magnetic energy of the fluid. 

We introduce the following Poisson bracket 
defined over functionals F[p, a, M~, Aj], where the 
variables ¢r = ps and Aj are entropy density and 
magnetic vector potential, respectively, 

6F 8 6G fiG _ fiF~ 

Thus the Hamiltonian H in (6) generates time 
evolution for MHD as a canonical transformation. 

It is possible to transfer bracket (7) from A- 
space to B-space (see formula (55) of [7]). The 
resulting cumbersome bracket simplifies greatly for 
n ~< 3, when 13 can be treated not as a 2-form but 
as a vector (for n = 3) or scalar (for n = 2). This 
bracket in 13 space, for n = 3, was first found by 
Greene and Morrison [6]. 

The entire set of Galilean symmetries of the 
MHD system (1)-(4) may be realized as a sub- 
group of the canonical transformations defined in 
terms of the Poisson bracket (7). The generators of 
the Galilean transformations are expressible as 
physical quantities, 

H = fd"x[M2/(2p) + pU(s, p) - 1/4 Tr B2], 
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Pi = f dnxMi ,  

I 
Lij = J &x(x,M,- xiMi), 

G, = - tP,. 

(lO) 

The functionals H, P~, and L!/, are respectively the 
total energy, kinetic momentum,  and kinetic angu- 
lar momentum of the M H D  fluid. 

As a result of  the Poisson bracket (7) the gener- 
ators (10) form a realization of the Lie Algebra of 
the Galilean group, viz. 

{H, Gi} = Pi, 

{Pa,  tii} = Pi(~ik- eiaik, 

= c , . a , k -  

[ L,,, Lk,} = 6,kCa- ~,Lik Jr- (SilLjk - (Sikg,, 

0 = (H,  Vk} = {H, Li,} = {e,,Pk} 

={P , ,Gk}={G, ,Gk} .  

(11) 

In addition, the following quantities Poisson- 
commute with all functionals defined over 
{p, ~, M~, A/}. That is, with 

,~  = d"xp (x), S = d"xa (x), (12) 

one finds that {.///,F} = 0 =  {S ,F)  for arbitrary 
F[p, ~, M~, A j]. So the total mass and entropy of 
the fluid each generate the identity transformation. 

We have already seen in (9) that the total energy 
H generates time translations. We notice also that 
the kinetic momentum and angular momentum of 
the fluid generate spatial translations and rota- 
tions, respectively. Those results follow from the 
identities 

f [6F 6F {rk, r } : - -  d"x ~pP,k+-~aak  

6F bF M + At, k~, + ~ I,k 
3 

03) 

f '  
•• L ••j • F • ° .  a d x (xi ~k -- Xjfi,k) 

X P,k "~ 5~ O''k 

fiF 5F 1 +;~a4,.~ + g ~  A,.k . (14) 

Note that for M H D  the magnetic field plays 

no role in the canonical momentum and angular 
momentum. Finally we mention that the functional 
G~ = - tPg is the generator of Galilean boosts in the 
ith direction, cf. eq. (13). Thus all of  the trans- 
formations in terms of the Galilean group are 
realized as canonical transformations in terms of 
physical variables with the Poisson bracket (7). 

3. Lie-algebraic interpretation of the Poisson 
structure 

We comment briefly on the mathematical origin 
of  formula (7) for the Poisson bracket. 

Recall that if (5 is a finite-dimensional Lie 
algebra, with a basis {e~ . . . . .  e~l and structure 
constants c!~:e~Aej = C~ek, then (smooth) functions 
on the dual space (5* form a Lie algebra with the 

Poisson bracket 

(15) 

where u[s are coordinates on (5* in the basis dual 
to {el}, A formula analogous to (15) exists when 
one has a "differential" Lie algebra, that is, when 
c~ are linear differential operators (examples of  this 
sort first appeared in [8, 9]; more details can be 
found in [10]). 

Let N be a (smooth) manifold, C"~(N) be a ring 
of smooth functions, @(N) be a Lie algebra of  
vector fields on N (i.e., derivations of C'~(N)), 
/x '(N) be a C~(N)  module of differential /-forms 

on N. 
Consider iR p with coordinates Yz . . . . .  ye. Denote 

by .~P(N) a Lie subalgebra of  ~ ( N  × R e) consis- 
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ting o f  vector  fields X o f  the form 

x = x ' +  fs a/ay,, X" e ~ ( N ) , f # C ~ ( N )  }.  

Finally, denote  by A ~'e(N) / - forms on N lifted to 
N x 11~ e by pullback of  the projection N × ff~e--,N. 

It is easy to see that  (~ = ~ e ( N ) O  A i'e(N) (di- 

rect sum of  C~(N)-modules )  is a Lie algebra with 
respect to mult ipl icat ion A given by 
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(X; ~o)A (Y; v) = (IX, Y]; X(v)  - Y(~o)), (16) 

where, e.g., X(v)  is the Lie derivative of  t h e / - f o r m ,  
v, with respect to the vector  field, X. 

Formula  (7) now can be gotten f rom (16) for  our  
~b by direct computa t ion ,  when one takes p = 2, 
i = n -- 1, N = R n = {(xl . . . . .  x,)} and denotes co- 
ordinates on (fi* in the following manner :  p and a 

are dual to c3/OYl and d/OY2, Mi's are dual to 
d/Oxi's, i = 1 . . . . .  n and Ai's are dual to 
O/Oxi__J(dx j A " "  A dx,), i = 1 . . . . .  n. 

The resulting bracket  (7) necessarily satisfies the 
Jacobi  identity and the other  defining propert ies  of  
a Poisson bracket  (linearity and an t i symmetry)  
because (7) has been constructed f rom a 
(differential) Lie algebra.  

Thus,  M H D  fits into an algebraic Hami l ton ian  
setting, directly in terms of  the physical variables. 
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